26 research outputs found

    Estimation of channelized features in geological media using sparsity constraint

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 86-89).In this thesis, a new approach is studied for inverse modeling of ill-posed problems with spatially continuous parameters that exhibit sparseness in an incoherent basis (e.g. a Fourier basis). The solution is constrained to be sparse in the transform domain and the dimension of the search space is effectively reduced to a low frequency subspace to improve estimation efficiency. The solution subspace is spanned by a subset of a discrete cosine transform (DCT) basis containing low-frequency elements. The methodology is related to compressive sensing, which is a recently introduced paradigm for estimation and perfect reconstruction of sparse signals from partial linear observations in an incoherent basis. The sparsity constraint is applied in the DCT domain and reconstruction of unknown DCT coefficients is carried out through incorporation of point measurements and prior knowledge in the spatial domain. The approach appears to be generally applicable for estimating spatially distributed parameters that are approximately sparse in a transformed domain such as DCT. The suitability of the proposed inversion framework is demonstrated through synthetic examples in characterization of hydrocarbon reservoirs.by Behnam Jafarpour.S.M

    Oil reservoir characterization using ensemble data assimilation

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2008.Pages 211-212 blank.Includes bibliographical references.Increasing world energy demand combined with decreasing discoveries of new and accessible hydrocarbon reserves are necessitating optimal recovery from the world's current hydrocarbon resources. Advances in drilling and monitoring technologies have introduced intelligent oilfields that provide real-time measurements of reservoir conditions. These measurements can be used for more frequent reservoir model calibration and characterization that can lead to improved oil recovery though model-based closed-loop control and management. This thesis proposes an efficient method for probabilistic characterization of reservoir states and properties. The proposed algorithm uses an ensemble data assimilation approach to provide stochastic characterization of reservoir attributes by conditioning individual prior ensemble members on dynamic production observations at wells. The conditioning is based on the second-order Kalman filter analysis and is performed recursively, which is suitable for real-time control applications. The prior sample mean and covariance are derived from nonlinear dynamic propagation of an initial ensemble of reservoir properties. Realistic generation of these initial reservoir properties is shown to be critical for successful performance of the filter. When properly designed and implemented, recursive ensemble filtering is concluded to be a practical and attractive alternative to classical iterative history matching algorithms. A reduced representation of reservoir's states and parameters using discrete cosine transform is presented to improve the estimation problem and geological consistency of the results. The discrete cosine transform allows for efficient, flexible, and robust parameterization of reservoir properties and can be used to eliminate redundancy in reservoir description while preserving important geological features.This improves under-constrained inverse problems such as reservoir history matching in which the number of unknowns significantly exceeds available data. The proposed parameterization approach is general and can be applied with any inversion algorithm. The suitability of the proposed estimation framework for hydrocarbon reservoir characterization is demonstrated through several water flooding examples using synthetic reservoir models.by Behnam Jafarpour.Ph.D

    An Integrated IGCC-CSS Design Course for Graduate Students in Petroleum Engineering

    Get PDF
    A new graduate course on CO2 Capture and Uses was offered for the first time at Texas A&M, Pet. Eng., in Fall 2008. 
A multidisciplinary team of instructors from the Pet. Eng. & Chem. Eng. departments was assembled to ensure the appropriate expertise.
The objective of the course is to let the students understand the need for / potential of Carbon Capture and Storage (CCS) & Enhanced Oil Recovery (EOR)

    Transform-domain sparsity regularization for inverse problems in geosciences

    Get PDF
    We have developed a new regularization approach for estimating unknown spatial fields, such as facies distributions or porosity maps. The proposed approach is especially efficient for fields that have a sparse representation when transformed into a complementary function space (e.g., a Fourier space). Sparse transform representations provide an accurate characterization of the original field with a relatively small number of transformed variables. We use a discrete cosine transform (DCT) to obtain sparse representations of fields with distinct geologic features, such as channels or geologic formations in vertical cross section. Low-frequency DCT basis elements provide an effectively reduced subspace in which the sparse solution is searched. The low-dimensional subspace is not fixed, but rather adapts to the data.The DCT coefficients are estimated from spatial observations with a variant of compressed sensing. The estimation procedure minimizes an l2-norm measurement misfit term while maintaining DCT coefficient sparsity with an l1-norm regularization term. When measurements are noise-dominated, the performance of this procedure might be improved by implementing it in two steps — one that identifies the sparse subset of important transform coefficients and one that adjusts the coefficients to give a best fit to measurements. We have proved the effectiveness of this approach for facies reconstruction from both scattered- point measurements and areal observations, for crosswell traveltime tomography, and for porosity estimation in a typical multiunit oil field. Where we have tested our sparsity regulariza-tion approach, it has performed better than traditional alter-natives

    Using Sparsity Constraint

    No full text
    In this thesis, a new approach is studied for inverse modeling of ill-posed problems with spatially continuous parameters that exhibit sparseness in an incoherent basis (e.g. a Fourier basis). The solution is constrained to be sparse in the transform domain and the dimension of the search space is effectively reduced to a low frequency subspace to improve estimation efficiency. The solution subspace is spanned by a subset of a discrete cosine transform (DCT) basis containing low-frequency elements. The methodology is related to compressive sensing, which is a recently introduced paradigm for estimation and perfect reconstruction of sparse signals from partial linear observations in an incoherent basis. The sparsity constraint is applied in the DCT domain and reconstruction of unknown DCT coefficients is carried out through incorporation of point measurements and prior knowledge in the spatial domain. The approach appears to be generally applicable for estimating spatially distributed parameters that are approximately sparse i

    Aquaporin 4: A key player in Parkinson's disease

    No full text
    Parkinson's disease (PD) is one of the most prevalent neurodegenerative diseases which occur in aged people worldwide. Given that a sequence of cellular and molecular mechanisms, including oxidative stresses, apoptosis, inflammatory pathways, microglia, astrocyte activation, and aquaporin 4 (AQP4) are associated with initiation and the progression of PD. AQP4 may affect various pathways (i.e., α-synuclein, inflammatory pathways, and microglia and astrocyte activation). Few reports have evaluated the relationship between AQP4 and PD-related cellular and molecular pathways. Here, for the first time, we highlighted the relationship between AQP4 and molecular mechanisms involved in PD pathogenesis. © 2019 Wiley Periodicals, Inc

    A reduced random sampling strategy for fast robust well placement optimization

    No full text
    Model-based decision-making in oilfield development often involves hundreds of computationally demanding reservoir simulation runs. In particular, well placement optimization under uncertainty in the geologic representation of the reservoir model is an overly time-consuming procedure as the performance of any proposed well configuration needs to be evaluated over multiple realizations, using computationally expensive flow simulations. To reduce computation, we propose an efficient robust optimization procedure in which at each iteration of the optimization procedure, instead of evaluating the well configuration over all available realizations, we approximate the expected performance using a small subset of randomly selected model realizations. Since the samples are selected randomly, all the realizations are expected to eventually be included in the performance evaluation after a certain number of iterations. However, using only a few random realizations to compute the expected cost function introduces noise in the estimated objective function, necessitating the use of a stochastic optimizer. In this paper, we use the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm, which is known to be robust against noise in the objective function. We first evaluate the performance of different forms of the SPSA algorithm (including discrete, continuous, and adaptive) using several numerical experiments, followed by a discussion of the properties of the proposed reduced random sampling approach and comparison with global optimization techniques. The method is applied to several numerical experiments, including case studies involving vertical, horizontal, and lateral wells, to evaluate its performance. The results from these experiments indicate that the reduced random sampling approach can provide significant computational gain with minimal impact on the attained optimization performance
    corecore